Q4. संख्या रेखा पर √9.3 को निरुपित कीजिए |
हल :
(i) एक 9.3 cm का रेखाखंड AB खींचिए और से 1 cm आगे बिंदु C तक बढाइये |
(ii) इसप्रकार बने रेखाखंड AC का लंब समद्विभाजक खींचिए जो AC को बिंदु O पर काटती है |
(iii) AO या CO को वृत्त की त्रिज्या मानकर एक अर्धगोला खींचिए |
(iv) बिंदु B से AC पर लंब खींचिए जो अर्धवृत की परिधि को बिंदु D पर काटती है | BD या BE अभीष्ट √9.3 का संख्या रेखा पर माप है |
प्रश्नावली 4.2
Q1. निम्नलिखित विकल्पों में से कौन-सा विकल्प सत्य है, और क्यों?
y = 3x + 5 का
(i) एक अद्वितीय हल है,
(ii) केवल दो हल है,
(iii) अपरिमित रूप से अनेक हल हैं |
हल : (iii) अपरिमित रूप से अनेक हल हैं |
Q2. निम्नलिखित समीकरणों में से प्रत्येक समीकरण के चार हल लिखिए :
(i) 2x + y = 7
(ii) πx + y = 9
(iii) x = 4y
अत: x और y का दिए गए समीकरण के लिए चार हल निम्नलिखित है :
अत: x और y का दिए गए समीकरण के लिए चार हल निम्नलिखित है :
अत: x और y का दिए गए समीकरण के लिए चार हल निम्नलिखित है :
Q3. बताइए कि निम्नलिखित हलों में कौन-कौन समीकरण x – 2y = 4 के हल है और कौन-कौन नहीं है :
(i) (0, 2)
(ii) (2, 0)
(iii) (4, 0)
Q(i) (0,2) समीकरण x – 2y = 4 का हल है अथवा नहीं
हल : x = 0 और y = 2 रखने पर
x – 2y = 4
LHS = 0 – 2(2)
= - 4
RHS = 4
इसलिए, LHS ≠ RHS
अत: (0, 2) दिए गए समीकरण का हल नहीं है |
हल : x – 2y = 4 में x = 2 और y = 0 रखने पर
LHS = 2 – 2(0)
= 2 – 0
= 2
जबकि RHS = 4 है
इसलिए, LHS ≠ RHS
अत: (2, 0) दिए गए समीकरण का हल नहीं है |
Q(iii) (4,0) समीकरण x – 2y = 4 का हल है अथवा नहीं
हल : समीकरण x – 2y = 4 में x = 4 और y = 0 रखने पर
LHS = x – 2y
= 4 - 2(0)
= 4 – 0 = 4
जबकि RHS = 4
यहाँ LHS = RHS है
अत: (4, 0) दिए गए समीकरण का हल है |
हल : समीकरण x – 2y = 4 में x = 1 और y = 1 रखने पर
LHS = x – 2y
= 1- 2(1)
= 1 – 2
= - 1
जबकि RHS = 4 है
अत: (1,1) समीकरण x – 2y = 4 का हल नहीं है |
Q4. k का मान ज्ञात कीजिए जबकि x = 2, y = 1 समीकरण 2x + 3y = k का एक हल हो |
हल : 2x + 3y = k
x = 2 और y = 1 रखने पर
⇒ 2x + 3y = k
⇒ 2(2) + 3(1) = k
⇒ 4 + 3 = k
⇒ k = 7