प्रश्नावली 4.3
Q1. दो चरों वाले निम्नलिखित रैखिक समीकरणों में से प्रत्येक का आलेख खींचिए :
(i) x + y = 4
(ii) x – y = 2
(iii) y = 3x
(iv) 3 = 2x + y
हल : (i) x + y = 4
⇒ y = 4 – x
x का मान क्रमश: 0, 1, तथा 2 रखने पर y का मान क्रमश: 4, 3 और 2 प्राप्त होता है जिसकी सारणी निम्न है |
हल : (ii) x – y = 2
⇒ x = 2 + y
समीकरण में y का मान 1, 2 और 3 रखने पर y का मान क्रमश: 3, 4 और 5 प्राप्त होता है जिसकी सारणी निम्न है -
हल : (iii) y = 3x
समीकरण में x का मान 0, 1 और – 1 रखने पर क्रमश y का मान 0, 3 और -3 प्राप्त होता है -
हल : (iv) 3 = 2x + y
⇒ y = 3 – 2x
समीकरण में x का मान 0, 1 और -1 रखने पर y का मान क्रमश: 3, 1 और 5 प्राप्त होता है जिसकी सारणी निम्न है -
Q2. बिंदु (2, 14) से होकर जाने वाली दो रेखाओं के समीकरण लिखिए | इस प्रकार की और कितनी रेखाएँ हो सकती है , और क्यों ?
हल : बिंदु (2, 14) में x = 2 और y = 14 है
अत: इस मान को संतुष्ट करने वाले दो समीकरण निम्न है :
x + y = 16
और x – y = -12
इस प्रकार की अनंत रेखाए हो सकती है क्योंकि ये रेखाएँ एक ही बिंदु (2, 14) से गुजरेंगी |
Q3. यदि बिंदु (3, 4) समीकरण 3y = ax + 7 के आलेख पर स्थित है, तो a का मान ज्ञात कीजिए |
हल : 3y = ax + 7
बिंदु (3, 4) में x = 3 और y = 4 है |
समीकरण 3y = ax + 7 में x और y का मान रखने पर
3(4) = a(3) +7
12 = 3a + 7
3a = 12 – 7
3a = 5
Q4. एक नगर में टैक्सी का किराया निम्नलिखित है: पहले किलोमीटर का किराया 8 रु है और उसके बाद की दूरी के लिए प्रति किलोमीटर का किराया 5 रु है। यदि तय की गई दूरी x किलोमीटर हो, और कुल किराया y रु हो, तो इसका एक रैखिक समीकरण लिखिए और उसका आलेख खींचिए।
हल : तय की गई दुरी = x km
कुल किराया = y रु
प्रश्नानुसार,
पहले किलोमीटर का किराया + 5(तय की गई दुरी - 1) = y
8 + 5(x - 1) = y
⇒ 8 + 5x - 5 = y
⇒ 3 + 5x = y
⇒ 5x –y + 3 = 0
⇒ y = 5x + 3
समीकरण में x का मान 0, -1 तथा 1 रखने पर y का मान क्रमश: 3, -2 और 8 प्राप्त होता है |
Q5. निम्नलिखित आलेखों में से प्रत्येक के लिए दिए गए विकल्पों से सही समीकरण का चयन कीजिए:
आकृति 4. 6 के लिए | आकृति 4.7 के लिए |
(i) y = x (ii) x + y = 0 (iii) y = 2x (iv) 2 + 3y = 7x |
(i) y = x + 2 (ii) y = x – 2 (iii) y = –x + 2 (iv) x + 2y = 6 |
हल : आकृति 4.6 के लिए
(ii) x + y = 0
आकृति 4.7 के लिए
(iii) y = -x + 2
Q6. एक अचर बल लगाने पर एक पिंड द्वारा किया गया कार्य पिंड द्वारा तय की गई दूरी के अनुक्रमानुपाती होता है। इस कथन को दो चरों वाले एक समीकरण के रूप में व्यक्त कीजिए और अचर बल 5 मात्रक लेकर इसका आलेख खींचिए। यदि पिंड द्वारा तय की गई दूरी
(i) 2 मात्रक (ii) 0 मात्रक
हो, तो आलेख से किया हुआ कार्य ज्ञात कीजिए।
हल :
माना किया गया कार्य = y
पिंड द्वारा विस्थापन = x मीटर
अचर बल = 5 इकाई
किया गया कार्य = बल × विस्थापन
W = F × S
इसलिए, y = 5x
(i) जब तय दुरी 2 मात्रक है तब
x = 2 रखने पर
अत: y = 5x
⇒ y = 5(2)
⇒ y = 10
किया गया कार्य 10 मात्रक
(ii) जब तय की गई दुरी 0 मात्रक है तब
x = 0 रखने पर
⇒ y = 5(0)
⇒ y = 0
किया गया कार्य 0 मात्रक
आलेख के लिए x का मान -1, 0 और 1 रखने पर y का मान क्रमश: - 5, 0 और 5 प्राप्त होता है |
Q7. एक विद्यालय की कक्षा IX की छात्राएं यामिनी और फातिमा ने मिलकर भूकंप पीडि़त व्यक्तियों की सहायता के लिए प्रधानमंत्री राहत कोष में 100 रु अंशदान दिया। एक रैखिक समीकरण लिखिए जो इन आंकड़ों को संतुष्ट करती हो। (आप उनका अंशदान x रु और y रु मान सकते हैं)। इस समीकरण का आलेख खींचिए।
हल : माना यामिनी द्वारा योगदान = x रु
और फातिमा द्वारा योगदान = y रु
दोनों के द्वारा दिया गया अंशदान = 100 रु
अत: प्रश्नानुसार,
x + y = 10
y = 100 - x
समीकरण में x का मान 10, 20 और 30 रखने पर y का मान क्रमश: 90, 80 और 70 प्राप्त होता है |
Q8. अमरीका और कनाडा जैसे देशों में तापमान फारेनहाइट में मापा जाता है, जबकि भारत जैसे देशों में तापमान सेल्सियस में मापा जाता है। यहाँ फारेनहाइट को सेल्सियस में रूपांतरित करने वाला एक रैखिक समीकरण दिया गया है:
(i) सेल्सियस को x-अक्ष और फारेनहाइट को y-अक्ष मानकर ऊपर दिए गए रैखिक
समीकरण का आलेख खींचिए।
(ii) यदि तापमान 30°C है, तो फारेनहाइट में तापमान क्या होगा?
(iii) यदि तापमान 95°F है, तो सेल्सियस में तापमान क्या होगा?
(iv) यदि तापमान 0°C है, तो फारेनहाइट में तापमान क्या होगा? और यदि तापमान 0°F है, तो
सेल्सियस में तापमान क्या होगा?
(v) क्या ऐसा भी कोई तापमान है जो फारेनहाइट और सेल्सियस दोनों के लिए संख्यात्मकत:
समान है? यदि हाँ, तो उसे ज्ञात कीजिए।
हल :
इसीप्रकार x का मान 20 और 30 रखने पर y का मान 68 और 86 प्राप्त होगा जिसकी तालिका निम्न है |
हल : (v) माना t वह तापमान है जो सेल्सियस और फारेनहाईट दोनों में संख्यात्मक रूप से समान है |
प्रश्नावली 10.1
Q1. खाली स्थान भरिए:
(i) वृत्त का केन्द्र वृत्त के _________ में स्थित है (बहिर्भाग/अभ्यंतर)।
(ii) एक बिन्दु, जिसकी वृत्त के केन्द्र से दूरी त्रिज्या से अधिक हो, वृत्त के _________ स्थित होता है (बहिर्भाग/अभ्यंतर)।
(iii) वृत्त की सबसे बड़ी जीवा वृत्त का ________ होता है।
(iv) एक चाप _______ होता है, जब इसके सिरे एक व्यास के सिरे हों।
(v) वृत्तखंड एक चाप तथा ______ के बीच का भाग होता है।
(vi) एक वृत्त, जिस तल पर स्थित है, उसे _______ भागों में विभाजित करता है।
उत्तर :
(i) अभ्यंतर
(ii) बहिर्भाग
(iii) ब्यास
(iv) अर्धवृत
(v) जीवा
(vi) अनंत
Q2. लिखिए, सत्य या असत्य। अपने उत्तर के कारण दीजिए।
(i) केन्द्र को वृत्त पर किसी बिन्दु से मिलाने वाला रेखाखंड वृत्त की त्रिज्या होती है।
(ii) एक वृत्त में समान लंबाई की परिमित जीवाएँ होती हैं।
(iii) यदि एक वृत्त को तीन बराबर चापों में बाँट दिया जाए, तो प्रत्येक भाग दीर्घ चाप होता है।
(iv) वृत्त की एक जीवा, जिसकी लम्बाई त्रिज्या से दो गुनी हो, वृत्त का व्यास है।
(v) त्रिज्यखंड, जीवा एवं संगत चाप के बीच का क्षेत्र होता है।
(vi) वृत्त एक समतल आकृति है।
उत्तर:
(i) सत्य
(ii) सत्य
(iii) असत्य
(iv) सत्य
(v) असत्य
(vi) सत्य
प्रश्नावली 13.2
जब तक अन्यथा न कहा जाए, π = लीजिए।
Ex 13.2 Class 9 गणित प्रश्न 1.
ऊँचाई 14 सेमी वाले एक लम्बवृत्तीय बेलन का वक्र पृष्ठीय क्षेत्रफल 88 सेमी² है। बेलन के आधार का व्यास ज्ञात कीजिए।
Ex 13.2 Class 9 गणित प्रश्न 2.
धातु की एक चादर से 1 मीटर ऊँची और 140 सेमी व्यास के आधार वाली एक बन्द बेलनाकार टंकी बनाई जानी है। इस कार्य के लिए कितने वर्ग मीटर चादर की आवश्यकता होगी?
Ex 13.2 Class 9 गणित प्रश्न 3.
संलग्न चित्र में, धातु का एक पाइप 77 सेमी लम्बा है। इसके एक अनुप्रस्थ काट का आन्तरिक व्यास 4 सेमी और बाहरी व्यास 4.4 सेमी है, ज्ञात कीजिए:
(i) आन्तरिक वक्र पृष्ठीय क्षेत्रफल
(ii) बाहरी वक्र पृष्ठीय क्षेत्रफल
Ex 13.2 Class 9 गणित प्रश्न 4.
एक रोलर (roller) का व्यास 84 सेमी है और लम्बाई 120 सेमी है। एक खेल के मैदान को एक बार समतल करने के लिए 500 चक्कर लगाने पड़ते हैं। खेल के मैदान का वर्ग मीटर में क्षेत्रफल ज्ञात कीजिए।
हल-
दिया है, रोलर का व्यास = 84 सेमी = 0.84 मीटर
रोलर की त्रिज्या (r) = मीटर = 0.42 मीटर
और रोलर की लम्बाई (l) = 120 सेमी = 1.20 मीटर
रोलर का वक्र पृष्ठीय क्षेत्रफल = 2πrh = 2πrl (h = l)
= 2 x x 0.42 x 120
= 3.168 वर्ग मीटर
रोलर द्वारा 1 चक्कर लगाकर समतल किया गया क्षेत्रफल = 3.168 वर्ग मीटर
रोलर द्वारा 500 चक्कर लगाकर समतल किया गया क्षेत्रफल = 500 x 3.168 = 1584 वर्ग मीटर
अतः खेल के मैदान का क्षेत्रफल = 1584 वर्ग मीटर
Ex 13.2 Class 9 गणित प्रश्न 5.
किसी बेलनाकार स्तम्भ का व्यास 50 सेमी है और ऊँचाई 3.5 मीटर है। ₹ 12.50 प्रति वर्ग मीटर की दर से इस स्तम्भ के वक्र पृष्ठ पर पेंट कराने का व्यय ज्ञात कीजिए।
हल-
दिया है, बेलनाकार स्तम्भ का व्यास = 50 सेमी = 0.5 मीटर
बेलनाकार स्तम्भ की त्रिज्या (r) = मीटर = 0.25 मीटर
और स्तम्भ की ऊँचाई (h) = 3.5 मीटर
बेलनाकार स्तम्भ का वक्र पृष्ठ = 2πrh
= 2 x x 0.25 x 3.5 = 5.5 वर्ग मीटर
स्तम्भ पर पेंट कराने का व्यय = वक्र पृष्ठ x रंगवाने की मूल्य-दर = 5.5 x 12.50 = 368.75
अतः स्तम्भ पर पेंट कराने का व्यय = ₹ 68.75
Ex 13.2 Class 9 गणित प्रश्न 6.
एक लम्बवृत्तीय बेलन का वक्र पृष्ठीय क्षेत्रफल 44 मीटर है। यदि बेलन के आधार की त्रिज्या 0.7 मीटर है तो उसकी ऊँचाई ज्ञात कीजिए।
हल-
माना लम्बवृत्तीय बेलन की ऊँचाई h मीटर है।
बेलन की त्रिज्या (r) = 0.7 मीटर
बेलन का वक्र पृष्ठीय क्षेत्रफल = 2πrh
= 2 x x 0.7 x h = 44h
परन्तु प्रश्न में दिया गया है कि बेलन का वक्र पृष्ठीय क्षेत्रफल 44 वर्ग मीटर है।
44 h = 44
h = 1 मीटर
अतः बेलन की ऊँचाई = 1मीटर
Ex 13.2 Class 9 गणित प्रश्न 7.
किसी वृत्ताकार कुएँ का आन्तरिक व्यास 3.5 मीटर है और यह 10 मीटर गहरा है। ज्ञात कीजिए:
(i) आन्तरिक वक्र पृष्ठीय क्षेत्रफल।
(ii) ₹ 40 प्रति मीटर की दर से इसके वक्र पृष्ठ पर प्लास्टर कराने का व्यय।
हल-
दिया है, वृत्ताकार कुएँ का आन्तरिक व्यास = 3.5 मीटर
वृत्ताकार कुएँ की आन्तरिक त्रिज्या (r) = मीटर
तथा कुएँ की गहराई (h) = 10 मीटर
(i) आन्तरिक वक्र पृष्ठीय क्षेत्रफल = 2πrh
= 2 x x x 10 = 110 वर्ग मीटर
(ii) वक्र पृष्ठ पर प्लास्टर कराने का व्यय = कुएँ का आन्तरिक वक्र पृष्ठीय क्षेत्रफल x प्लास्टर का प्रति वर्ग मीटर मूल्य
= 110 x 40 = 4400
Ex 13.2 Class 9 गणित प्रश्न 8.
गरम पानी द्वारा गरम रखने वाले एक संयन्त्र में 28 मीटर लम्बाई और 5 सेमी व्यास वाला एक बेलनाकार पाइप है। इस संयन्त्र में गर्मी देने वाला कुल कितना पृष्ठ है?
हल-
दिया है, बेलनाकार पाइप का व्यास = 5 सेमी = 0.05 मीटर
बेलनाकार पाइप की त्रिज्या (r) = = 0.025 मीटर
और पाइप की लम्बाई (l) = 28 मीटर
पाइप की वक्र पृष्ठ = 2πrh = 2πrl = 2 x x 0.025 x 28 = 44 वर्ग मीटर
अत: संयन्त्र में गर्मी देने वाला कुल पृष्ठ = 4.4 वर्ग मीटर
Ex 13.2 Class 9 गणित प्रश्न 9.
ज्ञात कीजिए।
(i) एक बेलनाकार पेट्रोल की बन्द टंकी का पार्श्व या वक्र पृष्ठीय क्षेत्रफल, जिसका व्यास 4.2 मीटर और ऊँचाई 4.5 मीटर है।
(ii) इस टंकी को बनाने में कुल कितना इस्पात (steel) लगा होगा, यदि कुल इस्पात का भाग बनाने में नष्ट हो गया है?
Ex 13.2 Class 9 गणित प्रश्न 10.
आकृति में, आप एक लैम्प शेड का फ्रेम देख रहे हैं। इसे एक सजावटी कपड़े से ढका जाना है। इस फ्रेम के आधार का व्यास 20 सेमी है और ऊँचाई 30 सेमी है। फ्रेम के ऊपर और नीचे मोड़ने के लिए दोनों ओर 2.5 सेमी अतिरिक्त कपड़ा भी छोड़ा जाना है। ज्ञात कीजिए कि लैम्प शेड को ढकने के लिए कुल कितने कपड़े की आवश्यकता होगी।
हल-
लैम्प शेड वृत्ताकार है।
लैम्प शेड का व्यास = 20 सेमी
लैम्प शेड की त्रिज्या (r) = सेमी = 10 सेमी
और लैम्प शेड की ऊँचाई = 30 सेमी
लैम्प शेड को सजाने में दोनों ओर 2.5 सेमी कपड़ा अतिरिक्त छोड़ा जाता है।
कपड़े की लम्बाई (l) = (30 + 2.5 + 2.5) सेमी = 35 सेमी
कपड़े का क्षेत्रफल = 2πrh = 2πrl [h = l]
= 2 x x 10 x 35 = 2200 वर्ग सेमी
अत: लैम्प शेड को ढकने के लिए आवश्यक कपड़े का क्षेत्रफल 2200 वर्ग सेमी होगा।
Ex 13.2 Class 9 गणित प्रश्न 11.
किसी विद्यालय के विद्यार्थियों से एक आधार वाले बेलनाकार कलमदानों को गत्ते से बनाने और सजाने की प्रतियोगिता में भाग लेने के लिए कहा गया। प्रत्येक कलमदान को 3 सेमी त्रिज्या और 10.5 सेमी ऊँचाई का होना था। विद्यालय को इसके लिए प्रतिभागियों को गत्ता देना था। यदि इसमें 35 प्रतिभागी थे, तो विद्यालय को कितना गत्ता खरीदना पड़ा होगा?