Let \(X:=\mathbb{R}\). Consider the pairs of bases:
(1)\(\mathbb{B_1}:=\{(a,b) \subseteq \mathbb{R} :a,b \in \mathbb{R} \}\) and \(\mathbb{B_2}:=\{(a,b) \subseteq \mathbb{R} :a,b \in \mathbb{Q} \}\).
(2) \(\mathbb{B_1}:=\{[a,b) \subseteq \mathbb{R} :a,b \in \mathbb{R} \}\) and \(\mathbb{B_2}:=\{[a,b) \subseteq \mathbb{R} :a,b \in \mathbb{Q} \}\).
(3) \(\mathbb{B_1}:=\{[a,b) \subseteq \mathbb{R} :a,b \in \mathbb{R} \}\) and \(\mathbb{B_2}:=\{(a,b) \subseteq \mathbb{R} :a,b \in \mathbb{R} \}\).
Do they generate comparable topologies ? If so then do they generate the same topology ?