Class 9 Homework-

Let \(\mathbb{R^{n+1}} \backslash \{0\}\) be the punctured Euclidean space and let \(\mathbb{S^n}\) denote the unit sphere in \(\mathbb{R^{n+1}}\). Define \(g : \mathbb{R^{n+1}} \backslash \{0\} \rightarrow \mathbb{S^{n}}\) by \(g(x)=x \backslash ||x||_2\). Show that \(g\) is an open map.




Related Questions