Class 9 Homework-

Consider the topological space \(\mathbb{R}_K\) . Show that there are no disjoint open sets \(U\) and \(V\) of \(\mathbb{R}_K\) such that \(\{0\} \subseteq U\) and \(K \subseteq V\). In particular, \(\mathbb{R}_K\) is Hausdorff but not normal.




Related Questions