Class 9 Homework-

Let \(X\) and \(Y\) be compact spaces. Assume further that \(Y\) is Hausdorff. Let \(f:X \rightarrow Y\) be a continuous surjection. Define the equivalence relation \(\sim\) on \(X\) by \(x_1 \sim x_2\) iff \(f(x_1)=f(x_2)\). Then \(g:X / \sim \rightarrow Y\) given by \(g(|x|)=f(x)\) is a well-defined homeomorphism.




Related Questions