Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Class 9 Homework-

Let G be a group and gG with (g)=n1n2 , where n1 and n2 are coprime positive integers. Then show that there are elements g1,g2G such that g=g1g2=g2g1 and (g1)=n1,(g2)=n2 . Further show that g1 and g2 are uniquely determined by these conditions.




Related Questions