Class 9 Homework-

Let \(G\) be an abelian group and \(n\) a positive integer. Define \(f: G \rightarrow G\) by \(f(x) =x^n\) . Show that \(f\) is an endomorphism of \(G\). Further if \(G\) is finite such that \(n\) and \(|G|\) are coprime, show that \(f\) is an automorphism of \(G\) .




Related Questions