Class 9 Homework-

Let \(C\) be circle \(|z| =R(R >1)\)  oriented counterclockwise. Show that

\(\left | \int_C \frac {Logz^2}{z^2}dz \right | \le 4\pi \left ( \frac{\pi + logR}{R} \right )\) and hence   \(\lim_{R \to \infty} \int_C \frac{Logz^2}{z^2}dz =0\) .




Related Questions