Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Class 9 Homework-

Let the function c:IR is continuous. Suppose that u1 and u2 are the solutions of u+c(t)u=0, with u1(t1)=a and u2(t2)=b, where a and b are constants and t,t1,t2 are members of an interval I. Then show that u1(t)u2(t)∣→0 as t1t2∣→0 and ab∣→0 for all tI.




Related Questions