A number when divided successively by 4 and 5 leaves remainders 1 and 4 respectively. When it is successively divided by 5 and 4 then the respective remainders will be ?
Adv.
Find the solution :
\(\frac{1^{93}+2^{93}+------+89^{93}}{90}\)
Solve :
\(\frac{2^{100}}{102}\) find Reminder ?
\(87^{2002} \) find last 3 digit .
Find last 2 digit :
\(43^{362}\)
Find remainder :-
\(\frac{10^{1}+10^{2}+10^{3}+--------+10^{100}}{6}\)
Find Reminder:
\(\frac{10^{4}+-----+30times}{7}\)
Find reminder
\(\frac{10^{10^{1}}+10^{10^{2}}+10^{10^{3}}+----+10^{10^{30}}}{7}\)
Find remainder
\(\frac{35^{33^{31}}}{16}\)
Find the value of remainder
\(\frac{113^{97^{96}}}{97}\)
Find the value of remainder:
\(\frac{15^{30^{45}}}{8}\)
All Questions
Physics
Chemistry
Mathematics
English
Organic Chemistry
Inorganic Chemistry
Physical Chemistry
Algebra
Geometry