Prove that by laplace transformation :
L{1}=1/s , s>0
Adv.
Prove that
L{t^n} =n! /s^(n+1)
L[e^at] =1/(s-a), s>a
L{\(Sin{at} \)} =\(\frac{a} {(s^{2}+a^{2})},s>0\)
L\(Cosat=\frac{s} {s^{2}+a^{2}},s>0\)
Prove that
L{\(Sinhat\)}\(=\frac{a} {s^{2}-a^{2}},s>|a|\)
L{\(coshat\)} =\(\frac{s} {s^{2}-a^{2}},s>|a|\)
Find the laplace transformation of
Sin2t cos3t
Find the laplace transformation of\(Sin^{3}2t\)
Find the laplace transformation of\(Cosh^{3}2t\)
Find the laplace transformation of\((\sqrt{t} +\frac{1}{\sqrt{t}})^{3} \)
All Questions
Physics
Chemistry
Mathematics
English
Organic Chemistry
Inorganic Chemistry
Physical Chemistry
Algebra
Geometry