Class 9 Homework-

 Let u(t) be a continuously differentiable function taking non-negative values for t > 0 satisfying \(u'(t)=3u(t)^{\frac{2}{3}}\) and u(0) = 0. Which of the following are possible solutions of the above equation?

(a) u(t) = 0

(b) u(t) = \(t^3\)

(c) \(u(t)= \begin{cases} 0 \; for \; 0<t<1 \\ (t-1)^3 for \;t \ge 3 \end{cases}\)

(d) \(u(t)=\begin{cases} 0 \; for \; 0<t<1\\ (t-3)^3\; for \;t\ge3 \end{cases}\)




Related Questions