Class 9 Homework-

Let \(y:\mathbb{R}\rightarrow \mathbb{R}\)satisfy the initial value problem

\(y'(t)=1-y^2(t),t\in\mathbb{R},y(0)=0\)

Then

(a) \(y(t_1)=1\) for some \(t_1\in\mathbb{R}\).

(b) y(t) > −1 for all t ∈ \(\mathbb{R}\).

(c) y is strictly increasing in \(\mathbb{R}\).

(d) y is increasing in (0, 1) and decreasing in (1,∞).




Related Questions