The first order system of equations equivalent to
\(x''+p(t)x'+q(t)x=0\)
is
\(\frac{dX}{dt} =A(t)X with \; X= {\begin{pmatrix} x_1\\x_2\end{pmatrix} },\)and \(\frac{dX}{dt}=\begin{pmatrix} x'_1\\x'_2 \end{pmatrix},\)
where A(t) is the \(2\times2 matrix\)
(a) \(\begin{pmatrix} 1&0\\-p&-q \end{pmatrix}\) (b)\(\begin{pmatrix}0&1\\-q&-p \end{pmatrix}\)(c)\(\begin{pmatrix} 0&1\\q&p \end{pmatrix}\) (d) \(\begin{pmatrix}-p&-q \\1&0\end{pmatrix}\)