Class 9 Homework-

 Let (X, d) be a metric space and let \(U\) be a subset of X. Show that \(x\in \overline{U}\), iff for every \(x\in \overline{U}\), there exists a convergent sequence \(\{x_n \} \subseteq U\) such that \(Lim_{n \rightarrow\infty}x_n=x\).




Related Questions