(Arithmetic Progression Basis) Let \(X\) be the set of positive integers and consider the collection \(\mathbb{B}\) of all arithmetic progressions of positive integers. Then \(\mathbb{B}\) is a basis. If \(m \in X\) then \(B:=\{m+(n-1)p\}\) contains m. Next consider two arithmetic progressions \(B_1=\{a_1+(n-1)p_1\}\)and \(B_2=\{a_2+(n-1)p_2\}\)containing an integer \(m\). Then\(B:=\{m+(n-1)(p)\}\) does the job for \(p:=lcm\{p_1,p_2\}\).