Class 9 Homework-

Define \(f: \mathbb{R} \rightarrow [0,1]\) by \(f(x) =x\) if \(|x| \le 1,\) and \(f(x)= \frac{1}{|x|}\) if \(|x| \ge1\). Then f is continuous on \(\mathbb{R}\). Note that \(f\) is onto but not one-one.




Related Questions