Show that \(D : \mathbb{R^ \omega} \times \mathbb{R^ \omega} \rightarrow \mathbb{R}\) given by
\(D((x_n),(y_n)):=sup_n \frac{min \{|x_n-y_n|,1\}}{n}\)
defines a metric on \(\mathbb{R^ \omega}\) . Verify further that \(D \le d_u\) , where \(d_u\) is the uniform metric.
- Voclasses