Verify that \(\mathbb{B_b}\) and \(\mathbb{B_p}\) are basis for a topology on \({\Pi^m}_\alpha X_\alpha\):
(1) \(\mathbb{B_b}=\{\Pi_{\alpha \in I } U_\alpha :U_\alpha \; is \; open \; in X_\alpha \}\) .
(2) \(\mathbb{B_b}=\{\Pi_{\alpha \in I } U_\alpha \in \mathbb{B_b}:U_\alpha=X_\alpha\) for finitely many values of \(\alpha\}\).