Let \(R\) be a commutative ring. Show that \(a|b \Leftrightarrow Ra \supset Rb, \forall a,b \in R\). Further if \(R\) contains the identity, show that for any \(a \in R\), if \(Ra\) is maximal, then \(a\) is an irreducible element of \(R\).
- Voclasses