Class 9 Homework-

Let \(H \le G \ and \ N(H) = \{g\in G \mid gHg^{-1}=H \}\). Prove that

(i) \(N(H) \le G\),    (ii) \(H \unlhd N(H)\),    (iii) If \(K \le G\) such that \(H \unlhd K\), then \(K \subseteq N(H)\),

(iv) \(H \unlhd G\) iff \(N(H)=G\).




Related Questions