Find the rank of matrix
\(\begin{bmatrix}1&2&3\\1&4&2\\2&6&5\end{bmatrix}\)
Adv.
\(\begin{bmatrix}2&3&4&-1\\5&2&0&-1\\-4&5&12&-1\end{bmatrix}\)
\(\begin{bmatrix}1&2&3&0\\2&4&3&2\\3&2&1&3\\6&8&7&5\end{bmatrix}\)
Reduce each of the following matrix to normal form and hence find their rank
\(\begin{bmatrix}2&3&-1&-1\\1&-1&-2&-4\\3&1&3&-2\\6&3&0&-7\end{bmatrix}\)
\(\begin{bmatrix}8&1&3&6\\0&3&2&2\\-8&-1&-3&4\end{bmatrix}\)
For the matrix
\(A=\begin{bmatrix}1&1&2\\1&2&3\\0&-1&-1\end{bmatrix}\)
For non singular matrices P and Q such that PAQ is in the normal form. Hence find the rank of A.
Reduce to triangular form
\(\begin{bmatrix}3&-4&-5\\-9&1&4\\-5&3&1\end{bmatrix}\)
Use Gauss-jordan method to find the inverse of matrix\(\begin{bmatrix}8&4&3\\2&1&1\\1&2&1\end{bmatrix}\)
Solve thehelp of matrix the simultaneous equations :
\(x+y+z=3, x+2y+3z=4, x+4y+9z=6\)
Solve the system of equations
\(2x_{1}+x_{2}+2x_{3}+x_{4}=6\)
\(4x_{1}+3x_{2}+3x_{3}-3x_{4}=-1\)
\(6x_{1}-6x_{2}+6x_{3}+12x_{4}=36\)
\(2x_{1}+2x_{2}-x_{3}+x_{4}=10\)
Using matrix mathod , show that the equations
3x+3y+2z=1,
x+2y=4,
10y+3z=-2,
2x-3y-z=5
are consistent and hence obtain the solution for x,y,and z.
All Questions
Physics
Chemistry
Mathematics
English
Organic Chemistry
Inorganic Chemistry
Physical Chemistry
Algebra
Geometry