Assume that \(a:[0,\infty)\rightarrow\mathbb{R}\) is a continuous function. Consider the ordinary differential equation:
\(y'(x)=a(x)y(x),x>0,y(0)=y_0\neq0.\)
Which of the following statements are true?
(a) If \(\int_0^\infty|a(x)|dx<+\infty, \) then y is bounded.
(b) If \(\int_0^\infty\) |a(x)|dx < +∞, then \(Lim_{x\rightarrow\infty}\) y(x) exists.
(c) If \(Lim_{x\rightarrow\infty}\) a(x) = 1, then \(Lim_{x\rightarrow\infty}\)|y(x)| = ∞.
(d) If \(Lim_{x\rightarrow\infty}\) a(x) = 1, then y is monotone.