Class 9 Homework-

 Let \(X:=\overline{\mathbb{D}} \subseteq \mathbb{R^2}\) (Closed Unit Disc) and let \(Y:=\mathbb{S^2} \subseteq \mathbb{R^3}\) (Unit Sphere). Verify the following:

(1) If \(z,w \in \mathbb{T}\)then set \(z \in w\). If \(z,w \in \mathbb{D}\) then \(z \in w\) provided \(z=w\). Then \(\sim\) defines an equivalence relation on \(X\).

(2) \(f:X \rightarrow Y,f(tx,ty)=(cos\pi(1-t),xsin\pi(1-t),ysin\pi(1-t))\) for \(0 \le t \le 1,(x,y) \in \mathbb{T}\) is a continuous surjection.

Conclude that \(X/ \sim\) and \(Y\) are homeomorphic.




Related Questions