Class 9 Homework-

Let \(X:=[0,1] \times [0,1]\). Define the equivalence relation \(\sim\) on \(X\) as follows: \((x,y) \sim (x^\prime,y^\prime)\) iff either \((x=0,x^\prime=1\)and \(y=1-y^\prime)\) or \((x=x^\prime\) and \(y=y^\prime)\). The quotient space is known as the Mobius strip  .

Define the equivalence relation \(\sim\) on \(X\)as follows:

\((x,y) \sim (x^\prime,y^\prime)\) iff either \((x=0,x^\prime=1)\) or \((x=1-x^\prime,y=0,y^\prime=1)\) or \((x=x^\prime\)and \(y=y^\prime)\). The quotient space is known as the Klein’s bottle.




Related Questions