Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Class 9 Homework-

Let R be a commutative ring and I an ideal of R, and let I={aR|amI for some positive integer m} Show that

(i) I is an ideal of R and II ,

(ii) I=I ,

(iii) If R is with identity and I=R, then I=R . What is I, when I={0}. (I is called the radical of I).




Related Questions