Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Class 9 Homework-

Let R be a commutative ring and I an ideal of R. Let Jac I denote the intersection of all maximal ideals of R that contain I.

(i) Prove that Jac I is an ideal of R, and I Jac I.

(ii) If n>1 is an integer, describe nZ in terms of the prime factorization of n.




Related Questions