Class 9 Homework-

Let \(R\) be a commutative ring and \(I\) an ideal of \(R\). Let Jac \(I\) denote the intersection of all maximal ideals of \(R\) that contain \(I\).

(i) Prove that Jac \(I\) is an ideal of \(R\), and \(\sqrt{I} \subseteq\) Jac \(I\).

(ii) If \(n >1\) is an integer, describe \(n\mathbb{Z}\) in terms of the prime factorization of \(n\).




Related Questions