Why the calculations through calculator are approximate?
Adv.
Using Power method, obtain the largest eigen value and corresponding eigen vector correct upto 2d of the following matrices:
3. \(\left[\begin{array}{ccc} 0&11&-5\\ -2&17&-7 \\ -4&26&-10\end{array}\right]\)
Find the smallest eigen value and corresponding eigen vector of the following matrices using Power method:
Find all the eigen values and corresponding eigen vectors using Power method:
If the largest eigen value of the matrix\(\left[\begin{array}{ccc} 5&-2&0 \\ 1&2&-3 \\ 1&-2&4\end{array}\right]\)is 6 and corresponding eigen vector is\(\left[\begin{array}{ccc} 1 \\ -1/2 \\ 1\end{array}\right]\),then find the subdominant eigen value.
Find the eigen values of following matrix:
\(\left[\begin{array}{ccc} 1&-1&0&0&0&0 \\ 1&1&-1&0&0&0 \\ 0&1&1&-1&0&0\\0&0&1&1&-1&0\\0&0&0&1&1&-1\\0&0&0&0&1&1\end{array}\right]\)
Let y(x) be a continuous solution of the initial value problem
y' + 2y = f(x), y(0) = 0, where \( f(x) = \begin{cases} 1, & \quad \text{if } 0 \le x\le1,\\ 0, & \quad \text{if } x>1 \end{cases} \)
Then y\(( \frac{3}{2})\) is equal to
(a) \(( \frac{sinh(1)}{e^3})\) (b) \(( \frac{cosh(1)}{e^3})\) (c) \(( \frac{sinh(1)}{e^2})\) (d) \(( \frac{cosh(1)}{e^2})\)
The singular integral of the ODE
\((xy'-y)^2 =x^2(x^2-y^2)\)
is
(a) \(y=xsinx\) (b) \(y=xsin(x+\frac{\pi}{4})\) (c) \(y=x\) (d) \(y=x+ \frac{\pi}{4}\)
The initial value problem
\(y'=2\sqrt{y}, y(0)=a,\)
has
(a) a unique solution if a < 0,
(b) no solution if a > 0,
(c) infinitely many solutions if a = 0
(d) a unique solution if a ≥ 0
For the initial value problem
\(\begin {cases} \frac{dy}{dx}=y^2+cos^2x, x>0,\\ y(0)=0 \end{cases}\)
The largest interval of existence of the solution predicted by Picard’s theorem is:
(a) [0, 1] (b) [0, \(\frac{1}{2}\) ] (c) [0, \(\frac{1}{3}\) ] (d) [0, \(\frac{1}{4} \) ]
Consider the ODE \(y'=f(y(x))\). If f is an even function and y is an odd function, then
(a) \(-y(-x)\)is also a solution.
(b)\(y(-x)\)is also a solution.
(c) \(-y(x)\) is also a solution.
(d) \(y(x)y(-x)\) is also a solution.
All Questions
Physics
Chemistry
Mathematics
English
Organic Chemistry
Inorganic Chemistry
Physical Chemistry
Algebra
Geometry