Let y(x) be a continuous solution of the initial value problem
y' + 2y = f(x), y(0) = 0, where \( f(x) = \begin{cases} 1, & \quad \text{if } 0 \le x\le1,\\ 0, & \quad \text{if } x>1 \end{cases} \)
Then y\(( \frac{3}{2})\) is equal to
(a) \(( \frac{sinh(1)}{e^3})\) (b) \(( \frac{cosh(1)}{e^3})\) (c) \(( \frac{sinh(1)}{e^2})\) (d) \(( \frac{cosh(1)}{e^2})\)