For the initial value problem
\(\begin {cases} \frac{dy}{dx}=y^2+cos^2x, x>0,\\ y(0)=0 \end{cases}\)
The largest interval of existence of the solution predicted by Picard’s theorem is:
(a) [0, 1] (b) [0, \(\frac{1}{2}\) ] (c) [0, \(\frac{1}{3}\) ] (d) [0, \(\frac{1}{4} \) ]