Find the smallest eigen value and corresponding eigen vector of the following matrices using Power method:
Adv.
Find all the eigen values and corresponding eigen vectors using Power method:
If the largest eigen value of the matrix[5−2012−31−24]is 6 and corresponding eigen vector is[1−1/21],then find the subdominant eigen value.
Find the eigen values of following matrix:
[1−1000011−1000011−1000011−1000011−1000011]
Let y(x) be a continuous solution of the initial value problem
y' + 2y = f(x), y(0) = 0, where f(x)={1,if 0≤x≤1,0,if x>1
Then y(32) is equal to
(a) (sinh(1)e3) (b) (cosh(1)e3) (c) (sinh(1)e2) (d) (cosh(1)e2)
The singular integral of the ODE
(xy′−y)2=x2(x2−y2)
is
(a) y=xsinx (b) y=xsin(x+π4) (c) y=x (d) y=x+π4
The initial value problem
y′=2√y,y(0)=a,
has
(a) a unique solution if a < 0,
(b) no solution if a > 0,
(c) infinitely many solutions if a = 0
(d) a unique solution if a ≥ 0
For the initial value problem
{dydx=y2+cos2x,x>0,y(0)=0
The largest interval of existence of the solution predicted by Picard’s theorem is:
(a) [0, 1] (b) [0, 12 ] (c) [0, 13 ] (d) [0, 14 ]
Consider the ODE y′=f(y(x)). If f is an even function and y is an odd function, then
(a) −y(−x)is also a solution.
(b)y(−x)is also a solution.
(c) −y(x) is also a solution.
(d) y(x)y(−x) is also a solution.
Let y:[o,∞)→[0,∞)be a continuously differentiable function satisfying
y(t)=y(0)+∫t0y(s)ds, for t≥0.
Then
(a) y2(t)=y2(0)=∫t0y2(s)ds.
(b) y2(t)=y2(0)+2∫t0y2(s)ds.
(c) y2(t)=y2(0)+∫t0y(s)ds.
(d) y2(t)=y2(0)+(∫t0y(s)ds)2+2y(0)∫t0y(s)ds.
Let u(t) be a continuously differentiable function taking non-negative values for t > 0 and satisfying u′(t)=4u34(t);u(0)=0.Then
(a) u(t)=0.
(b) u(t)=t4
(c) u(t)={0for0<t<1,(t−1)4fort≥1
(d) u(t)={0for0<t<10,(t−10)4fort≥10
All Questions
Physics
Chemistry
Mathematics
English
Organic Chemistry
Inorganic Chemistry
Physical Chemistry
Algebra
Geometry