Let \(y:[o,\infty) \rightarrow [0,\infty) \)be a continuously differentiable function satisfying
\(y(t)=y(0) +\int_0^t y(s)ds,\) for \(t\ge0.\)
Then
(a) \(y^2(t)=y^2(0)=\int_0^t y^2(s)ds.\)
(b) \(y^2(t)=y^2(0)+2\int_0^t y^2(s)ds.\)
(c) \(y^2(t)=y^2(0)+\int_0^t y(s)ds.\)
(d) \(y^2(t)=y^2(0)+\left(\int_0^ty(s)ds\right)^2 +2y(0)\int_0^ty(s)ds.\)