Let u(t) be a continuously differentiable function taking non-negative values for t > 0 and satisfying \(u'(t)=4u^\frac{3}{4}(t);u(0)=0.\)Then
(a) u(t)=0.
(b) \(u(t)=t^4\)
(c) \(u(t)=\begin{cases} 0\;\;\; for\, 0<t<1,\\ (t-1)^4 \;\;for \;t\ge1 \end{cases} \)
(d) \(u(t)=\begin{cases} 0\;\;\; for\, 0<t<10,\\ (t-10)^4 \;\;for \;t\ge10 \end{cases} \)