Let \(X:=[0,1] \times[0,1]\) (Unit Square) and let \(Y= \mathbb{T} \times \mathbb{T}\) (Torus). Verify the following:
(1) If \(s_1-s_2= \pm1\) then define \((s_1,t_1) \sim (s_2,t_2)\) iff \(t_1=t_2\). If \(t_1-t_2 = \pm1\) then define \((s_1,t_1) \sim (s_2,t_2)\) iff \(s_1=s_2\). If \((s_1,t_1),(s_2,t_2) \in [0,1] \times [0,1]\) then \((s_1,t_1) \sim (s_2,t_2)\) provided \(s_1=s_2\) and \(t_1=t_2\). Then \(\sim\) defines an equivalence relation on \(X\).
(2) \(f:X \rightarrow Y\) given by \(f(s,t)=(e^{2\pi is},e^{2\pi it})\) is a continuous surjection. Conclude that \(X / \sim\) and \(Y\) are homeomorphic.